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Abstract. In this paper, we present a new method which estimates the
pose of a human body and identifies its action from one single static
image. This is a challenging task due to the high degrees of freedom of
body poses and lack of any motion cues. Specifically, we build a pool
of pose experts, each of which individually models a particular type of
articulation for a group of human bodies with similar poses or semantics
(actions). We investigate two ways to construct these pose experts and
show that this method leads to improved pose estimation performance
under difficult conditions. Furthermore, in contrast to previous wisdoms
of combining the output of each pose expert for action recognition using
such method as majority voting, we propose a flexible strategy which
adaptively integrates them in a discriminative framework, allowing each
pose expert to adjust their roles in action prediction according to their
specificity when facing different action types. In particular, the spatial
relationship between estimated part locations from each expert is encod-
ed in a graph structure, capturing both the non-local and local spatial
correlation of the body shape. Each graph is then treated as a separate
group, on which an overall group sparse constraint is imposed to train the
prediction model, with extra weight added according to the confidence of
the corresponding expert. We show in our experiments on a challenging
web data set with state of the art results that our method effectively
improves the tolerance of our system to imperfect pose estimation.

1 Introduction

Human action recognition is an extremely important and active research field
in computer vision [1–4]. Its purpose is to recognize what a person is doing
or what the posture means. Human action recognition has many interesting
and important applications, for example, surveillance, entertainment, human-
computer interaction, image and video retrieval. Nowadays, most of the previous
work in this area focused on recognizing human actions from videos, those work
[5–7] mainly use motion cues and a lot of progress has been made in the recent
years. However, compared with videos, human action recognition from static
images is a relatively less-researched field. In fact, the analysis of human action
in still images is very important. This can be very useful for image understanding
and retrieval. Besides, it will not only help us to understand and analyze human
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Fig. 1. The stages of our action prediction pipeline. For a test image shown in the
leftmost, we use an ensemble of pose experts to extract pose cues from it, which are
then respectively fed into the corresponding action predictor to evaluate its posteri-
or probability distribution over action types. Finally, the conditional expectation is
calculated for each action type over the pose experts involved, based on which the fi-
nal decision is made. Technically, we use a discriminative framework with group sparse
constraints to jointly train this series of action predictors (detailed in Section 3.2). This
essentially allows each pose expert to play different roles in different action prediction
tasks according to their specificity, and the strength of each experts is thus adaptively
combined for the final action prediction.

actions under certain situations, but also can help us analyze and recognize
human behaviors.

In this paper, we present a new method for recognizing human actions from
still images. Our contribution is two-fold. First, we propose a global mixture of
pose experts for more accurate articulation modeling. In contrast to a previously-
proposed state of the art method [8] which uses a single pictorial tree with
mixture of small, non-oriented parts to model the non-linear and non-convexity
of the pose manifold of human being, we build a pool of pose experts, each of
which individually models a particular type of articulation for a group of human
bodies. We investigate two ways to construct the groups, one is based on the local
shape statistics from pose annotations, and the other uses the semantic similarity
related to action types. We show that both methods lead to improved pose
estimation performance under difficult conditions. Furthermore, the estimated
poses could be used for other tasks rather than action recognition, such as image
retrieval by pose.

As our second contribution, we propose a flexible strategy which adaptively
integrates the output of pose experts in a discriminative framework for action
prediction (c.f., Fig. 1). In contrast to previous methods of combining the output
of each pose expert using some relatively simple strategy such as majority voting,
our method essentially allows each pose expert to adjust their roles in prediction
according to their specificity when facing samples from different action types. To
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achieve this, we first use a graph structure to capture both the non-local and local
spatial correlation of the body shape estimated by the pose expert. Each graph
is then treated as a single unit, over which an overall group sparse constraint
is imposed to train the prediction model, with extra weight added according to
the confidence of the corresponding expert. We show in our experiments on a
challenging web data set with state of the art results that our method effectively
improves the tolerance of our system to imperfect pose estimation.

The rest of this paper is organized as follows. After a brief review of the
related work in Section 2, we details our method in Section 3. Experimental
results are given in Section 4. We conclude our paper in Section 5.

2 Related Work

The major challenges of action recognition from still images come from the vari-
ability of human visual appearances (possibly with highly cluttered background),
many degrees of freedom in human body postures, and lack of motion cue. In this
section we give a brief review on how to deal with these issues in the literature.

Particularly, these methods can be roughly categorized into two classes. The
first type of methods are appearance-based, in which various invariant feature
descriptors, such as SIFT, HOG [9], visual words [10], and so on, are used as
cues for action recognition [11, 1, 12, 10]. Despite many successes achieved by
these methods, we argue that invariant feature sets are insufficient alone for this
complicated task, since most of them can only provide partial invariance - some
address this type of variations and others address that but not all; and even with
these feature sets, lots of prototypes are still needed to cover the huge range of
the variability exhibited in the pose space of human body, not to mention such
a representation is usually with high dimension. To deal with these issues, some
authors proposed to enhance the stability of feature sets using various context
information (if available), such as human-object context[13–15] or group con-
text[16, 11, 1], or using a multiple cues based approach to combine the strength
of different features [2]. Recently, Wang et al. introduce a method which relies
on more semantically meaningful features (i.e., pose-lets) and arrange them in a
hierarchical manner to improve the invariance and discriminative power of the
feature representation [3], and achieves the state of the art performance on a
challenging web data set with still images [17].

Alternatively, one can decompose the task into two subsequent tasks by es-
timating the pose first and then recognizing the actions [9, 15, 18, 19], due to
the fact that the pose conveys a lot of information about the actions. These ap-
proaches can also be thought as a way to adopt a distributional representation
(pose vector) as the feature sets and we call them pose-based methods. While
the appearance-based methods enjoy the rich information extracted from the
raw data, the pose-based ones take the advantages of more compact pose rep-
resentation and higher degree of interpretableness for human beings (regarding
the results of action recognition yielded).
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However, it is worth mentioning that building the action classifier directly
based on the output of pose estimator [18, 19] could be dangerous due to the in-
herent uncertainty of the articulation modeling. To alleviate this issue, Yang et
al. propose to couple the task of pose estimation with the goal of actions recogni-
tion such that more discriminative poses could be learnt [9]. This method proves
to be very successful. However, in some real world situations, the boundary be-
tween two actions may be not so clear (e.g., running and walking), hence the
supervision information injected through the action labels could be misleading.

If motion information is available, both of the above two types of representa-
tion could be extended to their 3D versions by modeling the input sequences as
a tensor, as in dense trajectory [20, 4], action bank [21], among others [22–24].
These methods are related to our method but is unfortunately beyond the scope
of the current work. we note that there exist huge number of static images of
human beings in the internet, and it is of interest to properly model them and
infer their high-level semantics, e.g, their poses and actions.

3 The Proposed Method

The stages of our action prediction pipeline are shown in Fig. 1. In what follows,
we give the details of two major components involved, ie., the pose experts and
the corresponding action prediction model.

3.1 Pose Experts

A Part-based Method In this work, we adopt a variant of part based model
(PBM) as our pose expert. The basic idea of PBM [25, 26, 8] is to decompose the
whole human body into many local parts (the feet, hands, arms, legs, torso, etc.),
modeling them separately, and assembling them in such a way that the resulting
configuration satisfying well the spatial constraints imposed by the exemplars.
Mathematically, this is often equivalent to fit a tree structured model on the
given image. One problem of PBM, however, is how to effectively characterize
a large amount of poses in a single tree. Recently Yi Yang and Deva Ramanan
[8, 27] proposed a variant of PBM called flexible mixtures-of-parts (FMP), to
address this issue, and successfully applied it for human pose estimation and
human detection. Chen et al. [28] improve the model by incorporating the local
context information in multiple scales, and achieve more accurate results.

The key idea behind FMP is to use mixture of small, non-oriented parts for
articulation modeling and to learn the spatial constraints between these mix-
tures under a discriminative structural learning framework. Compared to the
single modal Gaussian as adopted in many PBM models, the mixture structure
effectively enhances the capability of PBM to represent human body with vari-
ous poses. However, what the FMP learns is essentially still a tree model, which
is limited in considering only the first order spatial relationship between two
adjacent parts, thus ignoring the high order spatial constraints of human body.
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In other words, the FMP is a flexible model to impose the complex local com-
patibility on the pose space but somehow lacks non-local or global compatibility
(e.g., the spatial regularity between one’s left leg and his right leg, as usually
exhibited in some type of actions).

To deal with this problem, we propose to group the pose space according
to the desired global compatibility before articulation learning, with each group
consisting of samples with similar poses or semantic meaning (e.g, actions). We
then train for each group one pose estimator (called pose expert in this work)
specific to that group, using the implementation of Chen et al. [28] (kindly
provided by the authors). When testing (e.g, performing pose estimation for a
never-seen image), we simply pick up the one output by the pose expert with
highest confidence.

It is worthy mentioning that this idea of pose expert is related to that of
poselet [29]. The major distinction between poselet and our method, however,
is that the poselet groups parts of human body while we groups human bodies
with similar poses. This different methodology leads to more broader difference
when using them. For example, it is straightforward to apply our pose experts
in the task of unsupervised human parsing, while a poselet model is more useful
in detecting the parts of human body under different poses.

Grouping the Pose Space The properties of the group have direct influence on
the specificity of the pose expert trained on it. Here two methods are considered:
one is based on some semantical similarity while the other is on pose similarity.
For our task at hand, one straightforward way to measure the similarity between
samples is their action types. Hence in the first method (called action-specific
grouping), we group together those images with the same action type (i.e., walk-
ing, running, etc.), and train one pose expert for it. This is similar to [9], but
the difference lies in that they have to perform a dynamic programming-based
searching for the most likely latent pose for each test image, while we consider
more pose candidates due to the inherent ambiguities of pose expert.

As another strategy, we consider a more generative way to construct the
pose expert, by grouping the training samples in the pose space (hence called
pose-specific grouping). For this we have to design a similarity metric which
reliably measures the pose similarity between two pose vectors. The traditional
Euclidean distance is not a good choice since the pose vectors may distribute
in a rather non-linear way in the pose space and it does not take the spatial
correlation between parts into consideration. To address this issue, we use shape
context feature, first used in shape matching and object detection by Belongie
[30], to capture such information.

In particular, consider the set of vectors originating from one part to all other
parts on a pose. These vectors express both the local and non-local configuration
information of the entire shape relative to the reference part, and this information
is summarized by the shape context feature as a 2D histogram. Hence shape
context feature sets could be used to represent well the internal structure of the
parts of human pose. In our implementation, we calculate the 2D histogram for
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each part, vectorize it, and concatenate all these to get a representation for the
pose of a human body. Usually this could lead to a vector with high dimension
(e.g, over 6,000), and one can use PCA to condense it. With these in hand, we
use the K-means algorithm with Mahalanobis distance as similarity measure to
perform the grouping operation.

In either ways, we obtain several groups of poses with some degree of global
compatibility preserved. We then use Chen et al.’s improved FMP model [28] to
construct a pose expert for each group.

Human Parsing Using an Ensemble of Pose Experts When the task of
pose estimation is of interest by itself, we use a minimum error rate principle to
regress for a test image the pose using the pre-trained ensemble of pose experts.
This is done by simply picking up the one output by the pose expert with highest
confidence as the estimation.

3.2 Action Recognition

Graph-based Action Representation The output of each pose expert is
a tree with its each node corresponding to a part in a human body, we can
simply vectorize this tree for action representation [8, 27]. One limitation of this
representation is that the non-local information between two non-adjacent parts
is ignored, while it is well known that when training samples is few, preserving
as rich information as possible is of importance for the subsequent classification
task. Here we use an undirected complete graph structure, so that the spatial
information regarding to any two body parts is explicitly encoded. This is similar
to the shape context feature we used before when grouping the poses, and in fact
the shape context feature can be interpreted as a more compact or discretized
version of the complete graph.

Besides these first order features, we also incorporate a subset of second-order
features by calculating the angle at the center part of an ordered triple parts.
This kind of high order features is usually ignored in the previous work but is
proven to be discriminative for some action types. For example, the angle formed
by upper arm and lower arm in the action of walking is always bigger than that
in a running action. As another example, the angle between upper leg and lower
leg in playing golf would be always approximately equal to 180◦.

More formally, assume that our training data set have been grouped into
H clusters as described in Section 3.1, based on which we learn H pose expert,
denoted as ej . Then for a given image I, the output of the j-th expert is denoted
as Rj = ej(I). Further assume that each human body has K body parts, and
Rj is actually a vector with its component being the location pk = (xk, yk) of
each part estimated by the expert, denoted as Rj = (p1, p1, . . . , pK). With this,
we construct a feature representation xj for each pose expert j as follows:

xj = (ψ1,2, ψ1,3, . . . , ψ1,K , ψ2,3, . . . , ψK−1,K , θ1, θ2, ..., θK′) (1)
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where ψ and θ denotes respectively the first and second order features (i.e.,
angles mentioned before). In particular, the first order feature between any two
parts m and n can be calculated as follows:

ψm,n = ϕ (I, pm, pn)

ϕ (I, pm, pn) =
[
dx dx2 dy dy2

]
where dx = xm − xn, dx2 = (xm − xn)

2
and dy = ym − yn, dy2 = (ym − yn)

2
,

accounting both the relative distance and the relative orientation between these
two parts. This can also be understood as modeling the negative spring energy
associated with pulling part i from a typical relative location with respect to part
j. Hence given H pose experts, we have for each image I a feature representation
x: x = [x1 x2 . . . xH ].

Combining Pose Experts via Group Sparse Model One of the major
challenges we face when identifying action type from the output of pose expert
is the inherent ambiguity in articulation modeling. In other words, we cannot
assume that the pose estimated by pose experts is perfect but in fact it is noisy
and weak (in terms of performance). Hence it is risky to simply rely on the
pose estimated by the pose expert with the highest score for action prediction.
Instead, a better choice is to follow the Bayesian idea, i.e., taking all the output
of pose experts in our pool into account.

Specifically, given a feature representation x, our goal is to estimate the
maximum posterior probability of action a, i.e., p(a|x). For this we train a series
of action predictors corresponding to each pose expert in the pool and properly
combine their responses for the final decision. Particularly, for a particular action
type a, denote the parameter of the action predictor corresponding to the j-th
pose expert as wj . We jointly learn all the action predictors w = {w1, w2, ..., wH}
by maximizing the following objective:

p(w|a, x1, x2, ..., xH) ∝ p(a|x1, x2, ..., xH , w1, w2, ..., wH)
∏
j

p(wj) (2)

where the model parameter w is assumed to have multivariate independent and
identical priors. We use the logistic regression to model p(a|x,w) as,

p(a|x,w) = (1 + exp(−a(
∑
j

(wj)Txj + b))−1 (3)

and the prior of wj is modeled as Laplace, whose energy is further scaled ac-
cording the confidence of the corresponding pose expert (detailed below). Note
that in the above formulation, although the behavior of each action predictor
for a pose expert is independent by the prior assumption, they jointly make the
final prediction by summarizing their responses before undergoing a nonlinear
transformation (c.f., Eq. 3).
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Now, assume that N training data points (ai, xi), ai ∈ {+1,−1} are available
to us, we reach the following objective by Eq. 2,

min
w

N∑
i=1

log(1 + exp(−ai(
∑
j

(wj)Txji + b))) + λ

H∑
j=1

(
1

nj

nj∑
i=1

S(Ii, ej))||wj ||2 (4)

where b is the bias shared by all the action predictors, and the scaling factor
over the energy of laplace prior is defined to the average confidence of the cor-
responding pose expert, i.e.,

αj =
1

nj

nj∑
i=1

S(Ii, ej) (5)

where nj is the size of group j (c.f., Section 3.1), and S(I, ej) is the score or
confidence of pose expert ej for image I, which is known to us after the pose
estimation stage.

Note that Eq.4 imposes a critical constraint that the pool of action predictors
should not contribute equally to the final prediction, and some of them will even
be canceled with a probability related to the confidence of the corresponding
pose expert. This effectively improves the robustness against ambiguity in artic-
ulation estimation. To solve Eq.4, we use an efficient implementation of proximal
methods [31]. After this, we can use these action predictors to perform action
recognition in the test stage, as illustrated in Fig. 1.

4 Experiments

In this section, we report our experimental results concerning two series of ex-
periments, i.e., human parsing (Section 4.1) and action recognition (Section 4.2).

4.1 Human Parsing Using an Ensemble of Pose Experts

We test our approach on two publicly available data set: the UIUC people data
set [32] and the still web image data set collected by Ikizler-Cinbis et al. [17].

UIUC People Data Set The UIUC people data set [32] contains 593 still
images. Most of these images are about people playing various sports such as
badminton, Frisbee, walking, jogging or standing, hence contains very aggressive
pose and spatial variations (c.f., Fig. 2). We follow the commonly used evaluation
protocols in this dataset with the standard data partitions (346 for training, 247
for testing). The original dataset has 14 parts location annotated on the human
body in each image, but we use 26 parts model as in [8].

For performance evaluation, we use the Percentage of Correct Parts (PCP)
metric [8, 28]. A part is localized correctly only if both the distances of the
endpoints from their respective ground truth endpoints are less than a fraction
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(usually set as 0.5 ) of the part length. With this, the percentage of correct parts
can be calculated for each image and then be averaged across all images.

We compare with several related state-of-the-art approaches that do full-body
parsing: the iterative parsing method [25], the improved pictorial structure [33],
and the discriminative hierarchical part-based model [3], Poselet conditioned
pictorial structures [34], the flexible mixture of parts model [8] and its improved
version by Chen et al.[28]. Note that since the UIUC data set has no action labels,
we only built our pose experts according to the pose similarity (c.f., Section 3.1).

Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
Ramanan [25] 44.1 30.8 9.5 25.3 11.1 25.5 21.8
Andriluka [33] 70.9 59.1 36.5 22.9 26.2 10.1 32.1
Wang [3] 86.6 68.8 56.3 50.2 30.8 20.3 47.0
Pishchulin [34] 91.5 85.0 66.8 54.7 38.3 23.9 54.4
Yang [8] 85.0 83.4 63.6 56.3 48.8 34.6 57.6
Chen [28] 87.9 85.4 64.2 57.5 49.2 38.3 59.1
Ours (pose-specific) 89.5 84.6 73.1 63.8 50.2 37.8 63.4

Table 1. Comparison of various part-based human parsing methods on the UIUC Peoples dataset.

Table 1 and Fig. 2 give the results. It is clear from this table that our method
based on an ensemble of pose-specific experts performs best among the compared
ones. In particular, it improves the previous state-of-the-art performance [28]
from 59.1% to 63.4%, and achieves better accuracy on most of key parts - notably,
compared to [28], the proposed method significantly improves the localization
accuracy of upper legs (from 64.2% to 73.1%) and upper arms (from 49.2% to
50.2%) (c.f., Fig. 2).

Still Web Image Data Set We also evaluate our method on the still web
image data set by Ikizler-Cinbis et al. [17]. This data set consists of still images
from 5 kinds of human action: dancing, sitting, playing golf, walking and running.
Since those images are all downloaded from Web, human poses vary greatly and
lots of images have cluttered backgrounds. Compared to the UIUC data set, this
data set also contains far more images (2458 images in all). Thanks Yang et al.
[9] for providing us their pose annotation with 14 joints on the human body
on all the images in the data set. For evaluation, we follow Yang [9] and Wang
[3] by partition 1/3 of the images from each kind of action for training, and
the rest of the images are used for testing. Unfortunately, both authors do not
perform human parsing experiments on this data set, and here we only compare
our method with the baseline method [28].

Table 2 gives the result. It reveals that both grouping methods (action-
specific and pose-specific) for pose experts construction lead to improved human
parsing performance than the baseline algorithm, and the pose-specific group-
ing method works best as expected. It is worthy noting that an ensemble of
action-specific pose experts still outperform the single-tree based model [28] -
this is somewhat surprising since the grouping criteria is not originally designed
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Fig. 2. Visualization of human parsing by the baseline method [28] (top row) and the
proposed method (bottom row) on the UIUC people data set.

Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
Baseline [28] 96.6 95.3 60.1 58.7 51.0 28.3 58.8
Ours (action-specific) 97.7 96.1 62.6 59.9 54.8 31.9 61.2
Ours (pose-specific) 97.6 95.2 68.9 62.4 60.0 35.4 64.6

Table 2. Comparative human parsing performance of our method and the baseline method on the
still web image data set.

for human parsing but for action recognition, but it can be partly explained by
the conjecture that the top-level semantic information is beneficial to the task
of pose estimation, as implied in Yang et al. [9]. Fig. 3 illustrates some human
parsing results yielded by the compared methods.

4.2 Action Recognition from a Single Web Image

Next we report our experiments on the task of action recognition from a single
web image, based on the still web image data set described in Section 4.1. As
stated before, our evaluation protocol follows the ones proposed by Yang [9] and
Wang [3] , i.e., using 1/3 of the images from each kind of action for training, and
the rest of the images for testing.

Effectiveness of the Proposed Method To assess the effectiveness of the
proposed method, we first designed several baseline algorithms by modifying one
or some of its component, as follows,

– Baseline algorithms: We first learn a single tree-structured articulation
model based on [28] from the training data. With the poses estimated by
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Fig. 3. Visualization of various methods for human parsing on the still web image data
set. From top to bottom, each row shows the results yielded by the baseline model [28],
our method with action-specific \ pose-specific experts, respectively.

this model for the training set, we train a sparse logistic regression (LR)
model as the action predictor. Two versions are implemented with different
representation for action recognition, i.e., the tree-based representation and
the graph-based representation (c.f., Section 3.2), as shown in the first two
rows in Table 6;

– Different grouping methods: All the remaining variants use multiple
pose experts, which are trained either in an action-specific way or in a pose
specific way, as described in Section 3.1;

– Different combining methods: We test three kinds of ways to combine
the output of pose experts for action prediction: 1) train a sparse logistic
regression-based action predictor for each pose expert and combine their
prediction by majority voting; 2) train the action predictors in the same as
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Methods Overall
Single Expert + Tree Rep. + Sparse LR 60.81
Single Expert + Graph Rep.+ Sparse LR 63.79
Action-Specific Experts + Graph Rep. + Max. resp. 62.87
Action-Specific Experts + Graph Rep. + Majority Voting 63.10
Action-Specific Experts + Graph Rep. + wGrpSparse LR 66.08
Pose-Specific Experts + Graph Rep. + Max. resp. 65.74
Pose-Specific Experts + Graph Rep. + Majority Voting 66.08
Pose-Specific Experts + Graph Rep. + wGrpSparse LR 67.84

Table 3. Performance (%) of variants of our method on the still web image data set, with both
overall and average per-class accuracies reported.

previous one, but trust the one with maximum response when combining
them (denoted as max. resp.); 3) jointly train those action predictors as
described in Section 3.2, denoted as ”wGrpSparse LR” (Weighted Group
Sparse Logistic).

Table 3 gives the results. From this table we have the following observations:
First, the results show that rich information is useful for more accurate action
recognition - this can be seen by comparing the results shown in the first two rows
- under the same settings, the method based on graph representation outperforms
the one using tree-based representation. Secondly, it can be seen that the two
types of action recognizers based on an ensemble of pose experts outperform the
baselines. In fact, the best performer is based on a pool of pose-specific experts,
achieving an accuracy of 68.84% that is over 4.0% higher than the best baseline
method.

Thirdly, the table reveals that jointly training all the action predictors are ef-
fective in fusing the strength of each pose expert. By comparing the performance
of jointly trained model with the ones trained independently (Max. resp. or Ma-
jority Voting), we find that the former consistently performs better than the
later. To gain further understanding on this, we show for pose-specific experts-
based method the energy of each action predictor assigned by the learner and the
corresponding accuracy in Table 5 and Table 4, respectively. One can see from
these two tables that different action predictors are good at predicting different
type of actions while the energy assigned by the learner (Eq. 4) is proportion
to this. For example, one can see from Table 4 that the 7-th action predictor is
good at recognizing dancing and running, but not so good at playing golf and
working. Accordingly, we see from the 7-th row of Table 5 that they receive large
energy in both dancing and running, but will be excluded to make a prediction
about playing golf and working.

Last but not least, it can be observed that the method based on the pose-
specific experts work better than that based on the action-specific ones. This
may be unexpected since pose-specific experts do not rely on any supervision
information, while action-specific experts are trained deliberately for each type
of actions. Despite this, Table 2 shows that on average action-specific experts do
not perform as well as pose-specific ones in the task of human parsing (61.2%
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dancing playgolf running sitting walking mean
group 1 68.25 56.41 78.75 46.01 52.65 63.69
group 2 55.26 47.13 80.50 73.24 57.98 65.29
group 3 64.09 41.58 73.17 57.71 62.36 62.75
group 4 59.38 63.10 81.78 70.63 32.70 63.19
group 5 59.60 44.97 80.96 41.76 59.54 61.85
group 6 56.28 54.39 79.06 69.47 60.68 65.76
group 7 66.31 37.43 71.55 44.95 36.69 55.17
group 8 49.56 46.90 76.97 36.33 60.27 58.11

Table 4. The action recognition accuracy (%) of each action predictor (each row), whose energy
assigned by the learner is shown as one corresponding row in Table 5.

Dancing playgolf running sitting Walking
group 1 1.9071 1.4831 1.0617 0.5722 0.6082
group 2 0.3056 0.7620 1.2251 1.3800 1.0011
group 3 1.0645 0.6213 0.8023 0.6384 1.0438
group 4 0.8377 1.6826 1.9567 1.7014 0.1466
group 5 0.9136 0.3988 1.0441 0.0000 1.4968
group 6 0.7858 1.6478 1.6883 0.9625 1.7677
group 7 1.9493 0.0000 0.7548 0.3556 0.0000
group 8 0.7763 0.5117 0.8766 0.0000 1.6639

Table 5. The energy of each action predictor (each row, the group number is kept the same as the
corresponding pose-specific expert) as a function of action type. These energy numbers are calculated

as the l2-norm of the corresponding weight vector wj jointly learned by optimizing objective (4).
The individual accuracy of these eight action predictors is shown in Table 4.

vs. 64.6%) - this implies that a less accurate pose estimator may lead to a
deteriorated overall performance for action prediction.

To further understand the behavior between the two types of experts, we
detail their confusion matrix in Fig. 4(a) and Fig. 4(b), respectively. By compar-
ing these, we find that about 24.0% running actions are misclassified as walking
by the approach based on pose-specific experts, while this number reduces to
20.0% by the one based on action-specific experts. This indicates that injecting
high-level semantic information into the articulation model is useful to reduce
the ambiguity for action prediction. Actually, since the poses of walking and
running are similar to each other in many cases, images with these two kinds of
actions are highly possibly to be clustered into the same group.

Comparison with the State-of-the-art Methods We compare our method
with two state-of-the-art action recognition methods on still images, i.e., Yang
[9] and Wang [3], and the results are given in Table 6. It can be seen from
the table that our approach performs better than both methods. However, it
should be noted that the accuracy numbers are not directly comparable since
the training/testing data sets and features are not completely identical.

5 Conclusions

In this paper, we present a new method for human parsing and action recognition
from a single still image, which is a less-studied problem. We base our method
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Fig. 4. Confusion matrix of the classification results on the still web image action
dataset, based on (a) action-specific pose experts and (b) pose-specific experts. Hori-
zontal rows are ground truths,and vertical columns are predictions.

Methods Overall
Baseline 63.79
Yang [9] 61.07
Wang [3] 65.15
Ours (action-Specific) 66.08
Ours (pose-Specific) 67.84

Table 6. Comparative performance (%) of our method and two state-of-the-art methods on the still
web image data set.

on a pool of pose experts, and show how to construct these pose experts and
how to flexibly combine the output of these experts for improved action recog-
nition performance. Our experiments on a challenging data set with web images
indicate that 1) compared to the single expert strategy, our multiple experts
approach is more effective for both tasks when the training data are relatively
few; 2) our modified group sparse logistic regression learner leads to better per-
formance than the one that trains its module independently. The importance of
rich information for action recognition is also highlighted. Our current search is
focused on how to extend the proposed method to the situation when motion
cues are available.
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